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The concept of ASC (algebraic structure count) is introduced into theoretical organic chem-
istry by Wilcox as the difference between the number of so-called “even” and “odd” Kekulé
structures of a conjugated molecule. Precisely, algebraic structure count (ASC-value) of the
bipartite graphG corresponding to the skeleton of a conjugated hydrocarbon is defined by
ASCG} = /| detA] whereA is the adjacency matrix af;. In the case of bipartite planar
graphs containing only circuits of the length of the forst® (s = 1, 2, ...) (the case of ben-
zenoid hydrocarbons), this number is equal to the number of the perfect matckiingduge)
of G. However, if some of circuits are of the length & = 1, 2,...) then the problem of
evaluation ASC-value becomes more complicated. The theorem formulated and proved in this
paper gives a simple and efficient algorithm for calculation of algebraic structure count of an
arbitrary bipartite graphs with 4+ n vertices. Three recurrence formulas for the algebraic
structure count — th&utman formulaswhich are closely analogous to the well-known recur-
rence formulak {G} = K{G — e} + K{G — (e)} for the number of perfect matching& - e
is the subgraph obtained from the gra@iby deleting the edge andG — (e) is the subgraph
obtained fromG by deleting both the edgeand its terminal vertices) are obtained as a simple
corollary of the theorem.
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1. Introduction

Thealgebraic structure counfASC-value) of a bipartite grap& is defined by

ASQG) := /| detA],

where A is the adjacency matrix ofi. This concept was introduced into theoreti-

cal organic chemistry by Wilcox [1,2], following earlier work of Dewar and Longuet-

Higgins [3]. It is based on the idea that each individual perfect matchirgulé struc-

ture) of the graph corresponding to a conjugated molecule has a “parity”. Then ASC is
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equal to the difference between the number of “even” and the number of “odd” perfect
matchings.

The thermodynamic stability of an alternant hydrocarbon is related to the ASC-
value ASQ for the bipartite graph which represents its skeleton. The basic application
of ASCis in the following. Among two isomeric conjugated hydrocarbons (whose re-
lated graphs have an equal number of vertices and an equal number of edges), the one
having greateASCwill be more stable. In particular, ASC = 0, then the respective
hydrocarbon is extremely reactive and usually does not exist [4,5].

In the case of the bipartite planar graphs containing only circuits of the length of
the form 4 + 2 (s = 1, 2,...) (benzenoid hydrocarbons) all perfect matchings are of
the same parity. Consequently, in this ca&Ccoincides with the number of perfect
matchings, i.e.K-value.

The enumeration of perfect matchings (Kekulé structures) is a classical problem in
the theoretical chemistry of polycyclic conjugated molecules with a plethora of known
counting formulae and several hundreds of published papers [6]. This can be attributed
to the fact that simple and powerful recursive method exists for the calculation of
K -values which is based on the formula

K{G} = K{G —e}+ K{G — (o)}

In this and what followingG — e stands for the subgraph obtained from the grgph
by deleting the edge of G andG — (e) stands for the subgraph obtained framby
deleting both the edgeand its terminal vertices.

On the other hand, there are very few works dealing with ASC. Ten years ago prof.
Ivan Gutman with his colleagues started the systematic study of the algebraic structure
count (ASC) [9-16]. The graphs of interest were bipartite planar graphs with at least
one face-boundary (cell) of length of the form@ = 1, 2, ...) (nonbenzenoid alternant
conjugated hydrocarbons). Let us mention some of the more interesting results (in our
subjective opinion).

The formula for theASGnumber for the lineafn]-phenylene (figure 1(a)) is
ASQ X, ,) =n+ 1[9], and the one for the multiple phenylenes (figure 1(b)) is

AT /n+1+R\" /n+1—R\"?
o (22525 ()]

whereR = v/2n + 1lifniseven and® = +/2n + 2 if nis odd [11,12].

The formula for the ASC the cyclic hexagonal-square ch@jnconsisting ofn
mutually isomorphic hexagonal chaiis, H,, ..., H, cyclically concatenated by cir-
cuits «; of length 4 (figure 2(a)) was obtained in [15]. In special cases depicted in
figures 2(b)—(d) we havASQ C4) = 0, ASGQCs) = 11 andASGCg) = 54756.

In [8] Gutman proved the following theorem.
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(a) Xl,n

@) Cy=Cy(Hy, Ha, ..., Hy) (b) Ca (€) Cs (d) Ce

Figure 2. (a) The cyclic hexagonal-square ch@jnconsisting of: mutually isomorphic hexagonal chains
Hy, Hp, ..., Hp, cyclically concatenated by circuits of length 4, (b)C4, (¢) Cs, (d) Cg.

Theorem 1. For the arbitrary bipartite graph witlhh+ » vertices and for every edge
of G the valueASQ G), ASQ G —e) andASG G — (e)) conform to one of the following
tree formulas:

ASQG} = ASQG — e} + ASG — (o)},
ASQG} = ASQG — e} — ASCG — (o)}, 1)
ASQG} =ASG — (e)} — ASQG — e}.

He deduced these recurrence formulas using some (more complicated) formulas
relating to characteristic polynomials of corresponding graphs. These techniques does
not make possible to determine the conditions to predict which of three formulas in (1)
will apply for a given edge of a given graphG.

In this paper we obtain the same formulas with a much simpler explanation which
enable us in some cases with an simple and applicable “paper-and-pencil” method for
the calculation oASC
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2.  Preéiminaries

Let G be an (undirected) bipartite graph with 2ertices withn vertices of each
colour: white verticesvy, wo, ..., w, and black vertice#,, by, ..., b,, and every edge
of G connects vertices of different colours.

Let H be a digraph, obtained frod by replacing every edge af by two directed
edges of opposite orientations between the same pair of vertices.

A spanning directed subgraph &f such that exactly one arc goes out from every
white (black) vertex and exactly one arc terminates in every black (white) vertex is called
awhite (blacK) separation Every white (black) separation can be represented as a per-
mutationP: jij» ... j, by a permutation of indexes of black (white) vertices. The labels
J1, jo» - - -, ju denote indexes of black (white) vertices on which the arcs, going out from
the white (black) vertices,, r5, ..., r, (b1, b, ..., b,) terminate.The parity of the white
(black) separationis defined as the parity of corresponding permutafioof numbers
1,...,n,i.e., asthe quantity—l)'”"(P), wherelnv(P) is the number of inversions in the
permutationP [7].

A regular spanning subgraph 6f of degree 1 is called perfect matchingf G.

Let M be a perfect matching & andW and B be the corresponding white and black
separation irH, respectively. If we denote the parity of the separafiohy par X then

it can easily be seen thpar W = par B (the corresponding permutations are inverse).
Now, we can define the parigar K of the perfect matching by

par K = par W = par B.

Let K¢ be the number of perfect matchings of positive parity &rtibe the num-
ber of perfect matchings of negative parity in the grgpht can be proved [7] that

detd = (-1)"|k¢ — KO,

whereA is the adjacency matrix (the Dewar and Longuet—Higgins theorem). Thus, from
the definition of the valuASCwe obtain

ASQG) = |K¢ — k9. )

Let G’ be a graphical representation of the considered bipartite graphtained
in such way that all vertices are aligned in two rows: the upper one consisting of
wi, wo, ..., w, and the lower one consisting of verticks b-, ..., b, (figure 3). For
everyi =1, ..., n the vertexp; is positioned bellow the vertex;. The edges o&;’ are
represented by linear segments.

For example, a bipartite graph and its corresponding representatiGhare plot-
ted in figure 3. For the perfect matching of this graph labeled by bold lines in figure 3,
corresponding permutation of black verticegis 12485673.

Recall that the parity of an arbitrary permutatiBrcan be determined &s-1)7”)
or (—1)"~1P wherep(P) is the number of (oriented) circuits of even length giG®) is
the number of all (oriented) circuits in the digraph of permutafiori-or the permutation
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Wy Wy W3 Wy W5 Wg W; Wy

b1 bz b3 b4 bs b6 b7 b8
(b)

Figure 3. A bipartite grapliz and its corresponding representatiGh

Figure 4. The permutatioR: 12485673 is even.

from the above example the valupgP) = 0 andq(P) = 6 (figure 4), so we can
conclude thaf is even.

On the other hand, observe that the parity of a perfect matching of the gréph
determined by parity of the number of intersections of line segments belonging the per-
fect matching (bold lines in figure 3) in corresponded representatiaf the graphG.
Namely, every such intersection of two line segments corresponds to exactly one in-
version of the black (white) separation. In our example in figure 3 the number of the
line segments intersections @ equals to 8 (even) so we obtain again that the perfect
matching in the example is even.

Recall [7] that the property of two perfect matching “being of the same parity”
depends neither on the labeling of the vertices nor on the choice of colours in the graph
coloring. This binary relation is an equivalence relation and, in a natural way, subdivides
the set of perfect matchings into two equivalence classes. However, the parity of a perfect
matching depends on the labeling of the vertices.

Thus, we introduce a new value which depends on the vertex labeling in the bi-
partite graph. LefZ be a starting (fixed) numbering of vertices @f i.e., L(w;) = i,
i=1...,n L®b;)=j,j=1,...,n Then

Dp(G) ¥ kG- — KO, (3)

wherer": is the number of perfect matchings of positive parity &4~ is the num-
ber of perfect matchings of negative parity in the graptvith respect to the labeling.
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From (2) we obtain
ASQG) = |D.(G)|. (4)

3.  Recurrenceformulafor D,(G) and the Gutman formulas

Theorem 2. Let £ be the given numbering of vertices6f(L(w;) =i,i =1,2,...,n;
Lbj)=j,j=12...,n),ande be an edge ofr concatenating the vertices andb;.
Then

Dr(G) =Dr(G —e) + (=1 Dp (G — (o)), (5)

where,’ is the numbering of vertices of grajggh— (e) obtained fromZ in the following
way:

, ) L(wy), if k <1i,

E(wk)_{ﬁ(wk)—l, ifi<k<n—1 (6)
and

' | L(by), if k < j,

E(bk)_{ﬁ(bk)—l, if j<k<n—1. (7)

Proof. Observe the representatiati of the considered grapti and a perfect matching
K of G’ containing the edge. If we delete the edge in G’ and renumber all white
vertices ofG’ on the right-hand side of the vertex and all black vertices o’ on the
right-hand side of the vertel; in the manner shown in (6) and (7), then we obtain the
graphical representation of the graph— (¢) described in section 2. Note that in this
way the number of line segments intersectionkois reduced just for the number of
these points belonging to the edgéf there exists any).

Thus, for the case= j (mod 2 this number is even because there are even num-
bers of vertices o6’ on both of the sides of the straight line determined witlandb ;.
Otherwise, for the case= j (mod 2 this number is odd because there are odd num-
bers of vertices o&;’ on both of the considered sides. From above we can conclude the
following.

If i =j (mod2, then

GL _ G—eL G—(e), L'
KOF = gO-F L gO-L
KOF = KO8 4 KO7OF,

(8)

If i # j (mod 2, then
Kf’ﬁ _ Kgfe,ﬁ + Kff(e%ﬁ/’
KOF = KOeF 4 K97OF,

From (3), (8) and (9) we obtain the formula (5). O

(9)
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Using (4) and the statement of theorem 2 we obtain the Gutman formulas (theo-
rem 1) for ASC as a simple corollary.

4, Remark

In some cases (like in the example below) when the considered graph contains as
its subgraphs some of graphs for which we know the value ASC and for which we know
at least one representative of the larger class of perfect matchings (the class of even
or odd perfect matchings) (in [13] this is every so-called “good” Kekule structures of
graphB,) the procedure of determination ASC-value can be reduced. If it is the case,
for the graphsi — (e) andG — e we can establish which of the Gutman formulas is valid
for the edgee.

Example. Let G be the graph with a numbering of its vertices depicted in figure 5.
For the emphasized edgehe following two graphs represent its subgraghs- ¢ and
G — (e) with corresponded numbering of edges, respectively.

Note that the graplt; — e has the only one perfect matching (whose edges are
labeled in the picture by bold lines) corresponding to permutation (of black vertices)
P: 21583471169 10 (figure 6(a)) that is odecausg —1)'™ P = (—1)114 = —1.

This implies

Dr(G—e)=KIF gL =0-1=-1 (10)

On the other hand, the graphi — (e) is well-known graph [13] for which we
know both the value of ASC and some of perfect matchings (so-called “good” perfect
matchings) in the larger class. In our case AlS G — (¢)) = 7. The perfect matching
of G — (e) emphasized in figure 5 belongs to the class having numbers (is a “good”
perfect matching). With respect to the numberifigof vertices the permutation (of
black vertices)’: 142357 1086 9 (figure 6(b)) corresponded to the perfect matching
is odd because—1)™() = (—1)19-5 = —1. This implies

Dp(G— () =KSOF — kSO = _ASqG — () = -7. (1)

Figure 5. A graphG ~ and its subgraph€ — e, andG — (e) o/.
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(b)
Figure 6. Both permutatior® and?’ are odd.

Finally, from (10) and (11) we obtai®-(G) = D(G — e) + (—=1)**>D,(G —
(e)) = —1— (=7) = 6, which impliesASQG) = |D.(G)| = 6.

Acknowledgments

The authors are grateful to Prof. lvan Gutman for useful discussions and many
valuable comments. This work was supported by the Serbian Ministry of Science and
Technology (Grant No. 1708).

References

[1] C.F. Wilcox, Tetrahedron Lett. 7 (1968) 795.
[2] C.F. Wilcox, J. Am. Chem. Soc. 91 (1969) 2732.
[3] M.J.S. Dewar and H.C. Longuet-Higgins, Proc. Roy. Soc. London Ser. A 214 (1952) 482.
[4] 1. Gutman, N. Trinajstt and C.F. Wilcox, Tetrahedron 31 (1975) 143.
[5] C.F. Wilcox, I. Gutman and N. Trinajtj Tetrahedron 31 (1975) 147.
[6] I. Gutman and S.J. Cyvirintroduction to the Theory of Benzenoid Hydrocarb@8gringer, Berlin,
1989).
[7] D.M. Cvetkovic, M. Doob and H. Sach§pectra of Graph§VEB, Berlin, 1982).
[8] I. Gutman, Z. Naturforsch. A 39 (1984) 794.
[9] I. Gutman, Indian J. Chem. A 32 (1993) 281.
[10] I. Gutman, J. Chem. Soc. Faraday Trans. 89 (1993) 2413.
[11] S.J. Cyvin, I. Gutman, O. Bodroza-Panénd J. Brunvoll, Acta Chim. Hung. (Models in Chemistry)
131 (6) (1994) 777.
[12] O. Bodroza-Panti S.J. Cyvin and |. Gutman, Commun. Math. Chem. (MATCH) 32 (1995) 47.
[13] O. Bodroza-Panti I. Gutman and S.J. Cyvin, Acta Chim. Hung. (Models in Chemistry) 133 (1996)
27.
[14] O. Bodroza-Panti, I. Gutman and S.J. Cyvin, Fibonacci Quart. 35 (1) (1997) 75.
[15] O. Bodroza-Panti Publications de L'Institut Mathématique 62 (76) (1997) 1.
[16] D.Babk, A. Graovac and I. Gutman, Polycyclic Aromatic Compoundes 4 (1995) 199.



